Machine Learning HW9

Explainable Al ML TAs

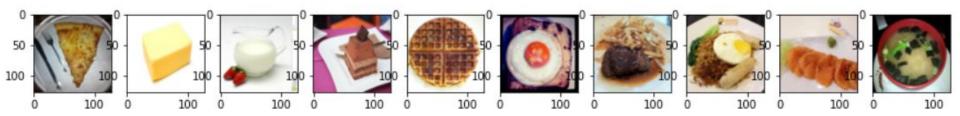
mlta-2022-spring@googlegroups.com

Outline

- Topic I: CNN (HW3)
 - Model & Dataset
 - o Task
 - Lime
 - Saliency Map
 - Smooth Grad
 - Filter Visualization
 - Integrated Gradient
- Topic II: BERT (HW7)
 - Task
 - Attention Visualization
 - Embedding Visualization
 - Embedding Analysis

Topic I: CNN explanation

Model: Food Classification

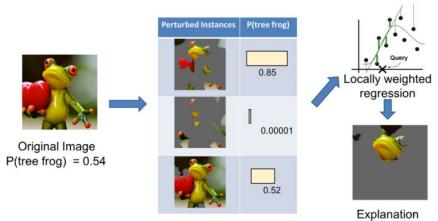

- We use a trained classifier model to do some explanations
- Model Structure:CNN model
- <u>Dataset</u>: 11 categories of food (same dataset in HW3)
 - Bread, Diary product, Dessert, Egg, Fried food, Meat, Noodles/Pasta, Rice, Seafood, Soup, and Vegetables/Fruit

Task

- Run the sample code and finish 20 questions (all multiple choice form)
- We'll cover 5 explanation approaches
 - Lime package
 - Saliency map
 - Smooth Grad
 - Filter Visualization
 - Integrated Gradients
- You need to:
 - Know the basic idea of each method
 - Run the code and observe the results
 - \circ For some cases, you may need to modify a small part of the code

Task: Observation

- In this homework, you only need to observe these 10 images.
- Please make sure you got these 10 images in your code.
- In the questions, the images are marked from <u>0 to 9</u>.
- We encourage you to observe other images!



Question 1 to 4

• Install the Lime package -> *pip install lime==0.1.1.37*

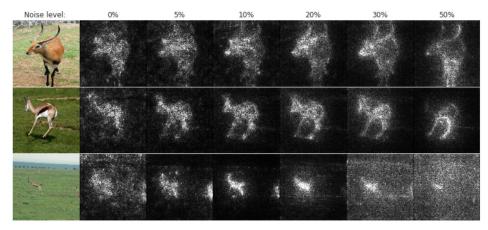
GitHub repo: https://github.com/marcotcr/lime

Ref: <u>https://reurl.cc/5G8EGG</u>

Question 5 to 9

• Compute the gradient of output category with respect to input image.

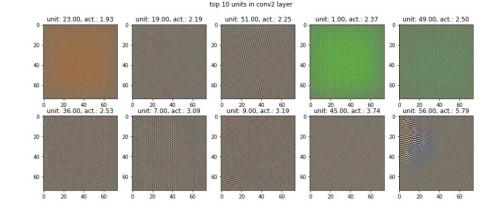
Ref: <u>https://reurl.cc/6ELeLk</u>



Smooth Grad

Question 10 to 13

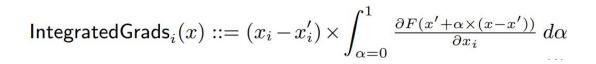
• Randomly add noise to the input image, and get the heatmap. Just like what we did in the saliency method.


Ref: https://arxiv.org/pdf/1706.03825.pdf

Filter Visualization

Question 14 to 17

• Use Gradient Ascent method to find the image that activates the selected filter the most and plot them (start from white noise).



Ref: https://reurl.cc/mGZNbA

Integrated Gradients

Question 18 to 20

• Flexible baseline


```
Top label and score
```

Integrated gradients

Gradients at image

Ref: https://arxiv.org/pdf/1703.01365.r

label, reflex comore

Top label: reflex camera Score: 0.993755

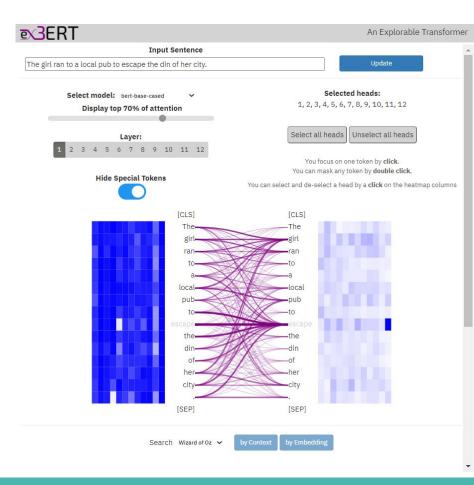
Top label: fireboat

Score: 0.999961

Topic II: BERT explanation

Task

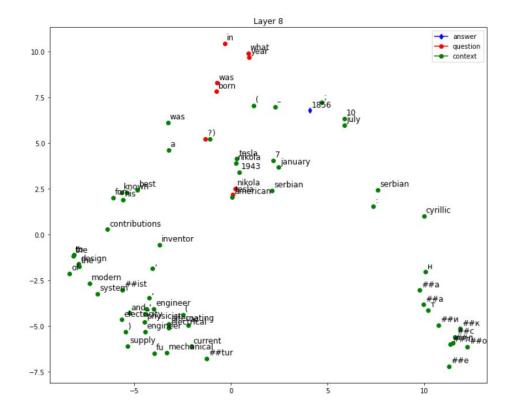
- Run the sample code and finish 10 questions (all multiple choice form)
- We'll cover 3 explanation approaches
 - Attention Visualization
 - Embedding Visualization
 - Embedding analysis
- You need to:
 - Know the basic idea of each method
 - Run the code and observe the results
 - For some cases, you may need to modify a small part of the code


Attention Visualization

Question 21 to 24

 Visualize attention mechanism of bert using <u>https://exbert.net/exBERT.html</u>

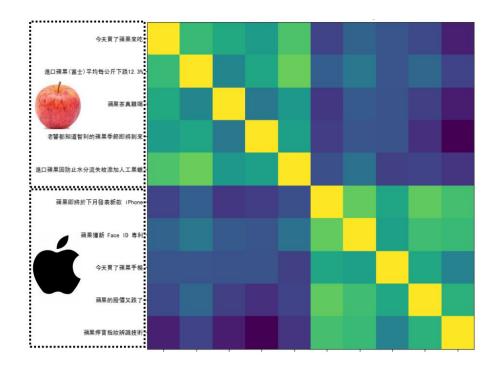
Alternative link: <u>https://huggingface.co/exbert/</u>


Ref: <u>https://arxiv.org/pdf/1910.05276.pdf</u> Tutorial: <u>https://youtu.be/e310yfo_thY</u>

Embedding Visualization

Question 25 to 27

- Visualize embedding across layers of BERT using PCA (Principal Component Analysis)
- Fine-tuned for Question Answering



Embedding Analysis

Question 28 to 30

- Compare output embedding of BERT using:
 - Euclidean distance
 - Cosine similarity

You only need to change code in the section "TODO" !

Grading

- 30 multiple choice questions
- CNN: 20 questions
 - 0.3 pt for each question
- BERT: 10 questions
 - \circ 0.4 pt for each question
- You have to choose ALL the correct answers for each question
- No leaderboards & reports are needed!!

Submission

- The questions are on **gradescope**
- Running the code may need some time!
- No late submission!
- You can answer the questions unlimited times
- The length of anwsering time of the assignment is unlimited
- We will consider the latest submission as the final score
- Remember to save the answer when answering the questions!
- You will see the scores after the deadline only!
- Deadline: 2022/05/20 23:59

- Code: [Colab]
- Questions: [gradescope]

Please don't change the original code, unless the question request you to do so.

If any questions, you can ask us via...

- NTU COOL (recommended)
 - <u>https://cool.ntu.edu.tw/courses/11666</u>
- Email
 - <u>mlta-2022-spring@googlegroups.com</u>
 - The title **must** begin with "[hw9]"
- TA hours
 - Each Tuesday 20:00~21:00 @ Online
 - Each Friday 16:30~17:20 @ Online
 - Each Friday 22:00~23:00 (English) @ Online